skip to main content


Search for: All records

Creators/Authors contains: "Profumo, Stefano"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The abundance of protoplanetary bodies ejected from their parent star system is presently poorly constrained. With only two existing optical observations of interstellar objects in the 108–1010 kg mass range and a small number of robust microlensing observations of free-floating planets (FFPs) in the 1024–1025 kg mass range, there is a large range of masses for which there are no existing measurements of the unbound population. The three primary microlensing surveys currently searching for FFPs operate at a cadence greater than 15 min, which limits their ability to observe events associated with bodies with a mass much below an Earth mass. We demonstrate that existing high-cadence observations of M31 with the Subaru Hyper Suprime-Cam place constraints on the abundance of unbound objects at sub-terrestrial masses, with peak sensitivity at 10−4 M⊕ for Milky Way lenses and 10−1 M⊕ for lenses in M31. For a fiducial $\frac{dn}{dM}\propto M^{-2}$ mass distribution, we find that the abundance of unbound objects is constrained to $n_\text{unbound} \lt 1.4 \times 10^{7} ~\rm {pc}^{-3}$ for masses within 1 dex of 10−4 M⊕. Additionally, we compute limits on an artificial ‘monochromatic’ distribution of unbound objects and compare to existing literature, demonstrating that the assumed spatial distribution of lenses has very significant consequences for the sensitivity of microlensing surveys. While the observations ultimately do not probe abundances suggested by current models of planetary formation, our limits place direct observational constraints on the unbound population in the sub-terrestrial mass range and motivate new observational strategies for microlensing surveys.

     
    more » « less
  2. null (Ed.)